Antifungal Susceptibility of Candida Species Isolated From Candiduria

Ali Zarei Mahmoudabadi¹,², Majid Zarrin¹*, Maryam Beheshti Fard¹

¹Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
²Infectious Diseases and Tropical Medicine Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran

ARTICLE INFO

Article type:
Original Article

Article history:
Received: 28 Feb 2012
Revised: 15 Apr 2012
Accepted: 28 Apr 2012

Keywords:
Antifungal Agents
Susceptibility
Candiduria
Candida Species

ABSTRACT

Background: Candiduria is one of the most common symptoms of urinary tract infections caused by several species of Candida spp. Several antifungals are available to treat such candidal infections. During the last decades, resistance to antifungal especially to non-albicans species has increased.

Objectives: The present study aimed to evaluate the susceptibility to antifungal drugs of Candida species isolated from candiduria in Ahvaz.

Materials and Methods: Ninety three species of yeasts and yeast like organisms isolated from urine samples [Candida albicans (58), C. glabrata (25), C. tropicalis (4), C. krusei (1), unknown Candida species (4) and Geotrichum species (1)] were used for susceptibility tests. All species were re-identified based on standard mycological methods. Then a suspension of each isolate of overnight cultures was prepared in 1ml of sterile PBS and adjusted to 0.5 McFarland turbidity standards. In the present study several antifungal drugs (fluconazole, amphotericine B, ketoconazole, econazole, itraconazole) were used for susceptibility test using disk diffusion method.

Results: In the present study all tested isolates were sensitive/dose dependent to amphotericine B and nystatin, whereas only one isolate of C. glabrata was resistant to both antifungals. Resistance against fluconazole (48.4%) and ketoconazole (26.9%) were observed among tested isolates. Resistance against fluconazole was detected among all tested organisms, 34.4% of C. albicans, and 7.5% of C. glabrata. On the other hand, all isolates were sensitive to econazole (93.5% sensitive, 6.5% dose dependent).

Conclusions: It was concluded that Candida species isolated from candiduria in hospitalized patients had excellent in vitro sensitivity against econazole. Other suitable antifungal drugs were amphotericine B and nystatin, itraconazole. Whereas, resistance against ketoconazole (26.9%) and especially fluconazole (48.4%) was significant.

Implication for health policy/practice/research/medical education:
Candiduria is a common infection of the urinary tract. Evaluation of the susceptibility to antifungal drugs could be used for treatment and control of infection.

Please cite this paper as:

* Corresponding author: Majid Zarrin, Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran.
Tel: +98-6113330074. Fax: +98-611332036, E-mail: mjzarrin@yahoo.co.uk

Published by Kowsar Corp, 2013. cc 3.0.
1. Background

Candiduria is one of the most common symptoms of urinary tract infections caused by several species of Candida, which is a normal flora of human body. Candida albicans has played an important role in candiduria (1, 2), however during the last decades non-albicans, such as C. glabrata, and C. tropicalis, have gradually increased in the incidence of nosocomial infections (1-6). Old age, long stay in hospital, using broad spectrum antibiotics, and renal defects are the most important predisposing factors for candiduria (1, 5, 7, 8). Several reports have indicated that candiduria is a very common infection in hospitalized patients and its incidence is linked to antibiotic usage, long stay in hospitals, old age etc (2, 6, 9).

There are several valuable antifungals, such as amphotericine B, itraconazole, fluconazole, ketoconazole, econazole and nystatin, that are effective against Candida species. Some of these agents (fluconazole, amphotericine B, ketoconazole, econazole, itraconazole) are systemically used to treat urinary tract infections (UTI) (4, 10). Several reports have demonstrated that antifungal fluconazole has been effective for short-term eradication of candiduria (1, 11). On the other hand, some researches have found that the susceptibility degree of Candida species vary towards the used antifungal drugs (6, 7). For example, C. kruze and C. glabrata are resistant and less susceptible to fluconazole, respectively (7, 8, 12). Recent reports from different countries and hospitals have indicated that there has been an association between non-albicans and the rate of fluconazole resistance (12-14).

The susceptibility degrees of Candida species towards the used antifungals drugs vary and due to the growing use of these antifungals, resistance to these agents has increased during the last decades (14).

2. Objectives

The present study aimed to determine the susceptibilities to antifungal drugs of Candida species isolated from candiduria in hospitalized patients of educational hospitals in Ahvaz.

3. Materials and Methods

3.1. Tested Yeasts and Identification

In the present study, 92 Candida spp. isolates and one Geotrichum spp. isolate were used for susceptibility tests. All species had been previously isolated from urine samples of hospitalized patients in the two educational hospitals in Ahvaz and identified by routine methods. Tested Candida isolates were included, C. albicans (58, 62.3%), C. glabrata (25, 26.8%), C. tropicalis (4, 4.3%), C. krusei (1, 1.1%), and Candida spp. (4, 4.3%). In addition, one isolate (1.1%) of Geotrichum spp. was also used for susceptibility tests. All strains were preserved in sterile distilled water at refrigerator temperature. The isolates were first subcultured on CHROMagar Candida (CHROMagar Candida®, France) plates and incubated at 37°C for 24h, aerobically to check for purity. All isolates were re-identified based on standard mycological methods, morphology on CHROMagar Candida, morphology on cornmeal agar, germ tube production and growth at 45°C. Then a suspension of each isolate of overnight cultures was prepared in ml of sterile PBS and adjusted to 0.5 McFarland turbidity standards.

3.2. Susceptibility Method

two sterile swabs were dipped into the suspension and rolled separately on the surface of two series of plates containing Sabouraud dextrose agar SDA (Merck, Germany) as lawn (17). The inoculated plates were dried in laminar hood at ambient temperature for 15mins. Paper disks of antifungals were placed on plates (three antifungal disks for each plate) by forceps and incubated at 37°C for 24h, aerobically. Antifungal disks were nystatin (100U), amphotericine B (20µg), fluconazole (100µg), ketoconazole (10µg), itraconazole (50µg) and econazole (10µg). All antifungal disks were purchased from Liofilchem Bacteriology Products (Italy). After 24h, the zone diameter around each antifungal disk was manually measured by ruler and recorded.

4. Results

4.1. Interpretive Criteria for Susceptibility of Antifungals

The interpretive criteria for the fluconazole, nystatin, amphotericine B, ketoconazole, itraconazole and econazole disks were indicated in Table 1 (15, 16).

4.2. Susceptibility to Amphotericine B

In the present study 54.8% and 44.1% were dose dependent and sensitive to amphotericine B, respectively (Table 2). 44.8% of C. albicans isolates were dose dependent and the rest of them (55.2) were sensitive to amphotericine B. One isolate (4%) of C. glabrata was resistant to amphotericine B, whereas 15 (60%) and 9 (36%) were dose dependent and sensitive to amphotericine B, respectively.

4.3. Susceptibility to Itraconazole

Susceptibility of tested isolates indicated that only one iso-
Table 2. Susceptibility of Candida spp. Isolates to Antifungal Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>C. albicans</th>
<th>C. glabrata</th>
<th>Candida sp.</th>
<th>C. tropicalis</th>
<th>C. krusei</th>
<th>Geotrichum</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B</td>
<td>0.0%</td>
<td>1.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Resistance</td>
<td>26 (28.0%)</td>
<td>15 (16.1%)</td>
<td>4 (4.3%)</td>
<td>4 (4.3%)</td>
<td>1 (1.1%)</td>
<td>1 (1.1%)</td>
<td>51 (54.8%)</td>
</tr>
<tr>
<td>Dose dependent</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Sensitive</td>
<td>32 (34.4%)</td>
<td>9 (9.7%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>41 (44.1%)</td>
</tr>
<tr>
<td>Total</td>
<td>58 (62.4%)</td>
<td>25 (26.9%)</td>
<td>4 (4.3%)</td>
<td>4 (4.3%)</td>
<td>1 (1.1%)</td>
<td>1 (1.1%)</td>
<td>93 (100%)</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Resistance</td>
<td>52 (55.9%)</td>
<td>24 (25.8%)</td>
<td>4 (4.3%)</td>
<td>4 (4.3%)</td>
<td>0 (0.0%)</td>
<td>1 (1.1%)</td>
<td>85 (91.4%)</td>
</tr>
<tr>
<td>Dose dependent</td>
<td>6 (6.5%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>7 (7.5%)</td>
</tr>
<tr>
<td>Sensitive</td>
<td>35 (37.6%)</td>
<td>4 (4.3%)</td>
<td>0 (0.0%)</td>
<td>2 (2.2%)</td>
<td>2 (2.2%)</td>
<td>0 (0.0%)</td>
<td>41 (44.1%)</td>
</tr>
<tr>
<td>Total</td>
<td>58 (62.4%)</td>
<td>25 (26.9%)</td>
<td>4 (4.3%)</td>
<td>4 (4.3%)</td>
<td>1 (1.1%)</td>
<td>1 (1.1%)</td>
<td>93 (100%)</td>
</tr>
<tr>
<td>Nystatin</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Resistance</td>
<td>23 (24.7%)</td>
<td>20 (21.5%)</td>
<td>4 (4.3%)</td>
<td>2 (2.2%)</td>
<td>1 (1.1%)</td>
<td>1 (1.1%)</td>
<td>51 (54.8%)</td>
</tr>
<tr>
<td>Dose dependent</td>
<td>6 (6.5%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>7 (7.5%)</td>
</tr>
<tr>
<td>Sensitive</td>
<td>35 (37.6%)</td>
<td>4 (4.3%)</td>
<td>0 (0.0%)</td>
<td>2 (2.2%)</td>
<td>2 (2.2%)</td>
<td>0 (0.0%)</td>
<td>41 (44.1%)</td>
</tr>
<tr>
<td>Total</td>
<td>58 (62.4%)</td>
<td>25 (26.9%)</td>
<td>4 (4.3%)</td>
<td>4 (4.3%)</td>
<td>1 (1.1%)</td>
<td>1 (1.1%)</td>
<td>93 (100%)</td>
</tr>
<tr>
<td>Econazole</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Resistance</td>
<td>17 (18.3%)</td>
<td>16 (17.2%)</td>
<td>1 (1.1%)</td>
<td>2 (2.2%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>36 (38.7%)</td>
</tr>
<tr>
<td>Dose dependent</td>
<td>9 (9.7%)</td>
<td>2 (2.2%)</td>
<td>1 (1.1%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>12 (12.9%)</td>
</tr>
<tr>
<td>Sensitive</td>
<td>35 (37.6%)</td>
<td>23 (24.7%)</td>
<td>4 (4.3%)</td>
<td>4 (4.3%)</td>
<td>1 (1.1%)</td>
<td>1 (1.1%)</td>
<td>33 (35.5%)</td>
</tr>
<tr>
<td>Total</td>
<td>58 (62.4%)</td>
<td>25 (26.9%)</td>
<td>4 (4.3%)</td>
<td>4 (4.3%)</td>
<td>1 (1.1%)</td>
<td>1 (1.1%)</td>
<td>93 (100%)</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Resistance</td>
<td>19 (20.4%)</td>
<td>4 (4.3%)</td>
<td>2 (2.2%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>25 (26.9%)</td>
</tr>
<tr>
<td>Dose dependent</td>
<td>31 (33.3%)</td>
<td>14 (15.1%)</td>
<td>0 (0.0%)</td>
<td>4 (4.3%)</td>
<td>1 (1.1%)</td>
<td>0 (0.0%)</td>
<td>50 (53.8%)</td>
</tr>
<tr>
<td>Sensitive</td>
<td>8 (8.6%)</td>
<td>7 (7.5%)</td>
<td>2 (2.2%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>1 (1.1%)</td>
<td>18 (19.4%)</td>
</tr>
<tr>
<td>Total</td>
<td>58 (62.4%)</td>
<td>25 (26.9%)</td>
<td>4 (4.3%)</td>
<td>4 (4.3%)</td>
<td>1 (1.1%)</td>
<td>1 (1.1%)</td>
<td>93 (100%)</td>
</tr>
<tr>
<td>Ketconazole</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Resistance</td>
<td>17 (18.3%)</td>
<td>16 (17.2%)</td>
<td>1 (1.1%)</td>
<td>2 (2.2%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>36 (38.7%)</td>
</tr>
<tr>
<td>Dose dependent</td>
<td>9 (9.7%)</td>
<td>2 (2.2%)</td>
<td>1 (1.1%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>12 (12.9%)</td>
</tr>
<tr>
<td>Sensitive</td>
<td>35 (37.6%)</td>
<td>23 (24.7%)</td>
<td>4 (4.3%)</td>
<td>4 (4.3%)</td>
<td>1 (1.1%)</td>
<td>1 (1.1%)</td>
<td>33 (35.5%)</td>
</tr>
<tr>
<td>Total</td>
<td>58 (62.4%)</td>
<td>25 (26.9%)</td>
<td>4 (4.3%)</td>
<td>4 (4.3%)</td>
<td>1 (1.1%)</td>
<td>1 (1.1%)</td>
<td>93 (100%)</td>
</tr>
</tbody>
</table>

late of C. krusei was resistant to itraconazole. 91.4% of isolates were dose dependent and 7.5% were sensitive to itraconazole (Table 2). Overall, it was evident that 89.7% and 96.0% of C. albicans and C. glabrata were respectively exhibited dose dependent and the rest of them were sensitive.

4.4. Susceptibility to Nystatin

The details of susceptibility tested isolates to nystatin were shown in Table 2. As indicated, 54.8% and 44.1% of tested isolates were dose dependent and sensitive to nystatin, respectively. In the present study, only one isolate (1.1%) of C. glabrata was resistant to nystatin. Totally 39.7% and 80.0% of C. albicans and C. glabrata were dose dependent to nystatin, respectively, whereas 60.3% and 16.0% of C. albicans and C. glabrata were sensitive to nystatin, respectively.

4.5. Susceptibility to Econazole

The results of susceptibilities to econazole indicated that most of the tested isolates (93.5%) were sensitive to econazole and the rest of them were dose dependent (Table 2). Besides, 93.1% and 92.0% isolates of C. albicans and C. glabrata were sensitive to econazole and the rest of them were dose dependent.

4.6. Susceptibility to Fluconazole

Table 2 shows the susceptibility details of 93 tested isolates to fluconazole. As indicated, the zones around 48.4% of isolates were resistant to fluconazole, 38.7% dose dependent and 12.9% sensitive. When looking into C. albicans, 32 (55.2%) of isolates were resistant to fluconazole followed by, 17 (29.3%) dose dependent and 9 (15.5%) sensitive. Also, results indicated that 7 (28.0%) of C. glabrata were resistant to drug, followed by 16 (64.0%) dose dependent and 2 (8.0%) sensitive.

4.7. Susceptibility to ketoconazole

The susceptibility details of tested isolates to ketoconazole were shown in Table 2. As shown 26.9%, 53.8% and 19.4% of isolates were respectively resistant, dose depen-
dent and sensitive to ketoconazole. Totally 53.4% and 56% of C. albicans and C. glabrata were dose dependent to ketoconazole, respectively. In the present study 32.8% and 13.8% of C. albicans were respectively resistant and sensitive to ketoconazole compared to 16.0% and 28.8% of C. glabrata.

5. Discussion
Fungal UTI has become an important nosocomial infection over the past decades among hospitalized patients. In addition, the extensive use of antifungals in hospitals may be a risk of emergence of resistant fungal strains (17, 18). For example, fluconazole is an important antifungal drug that is usually used to treat systemic fungal infections caused by Candida species. In addition, prophylaxis against systemic fungal diseases is also more prevalent by fluconazole.

The susceptibility of Candida species to frequently used antifungals drugs has various degrees. It has been reported that non-albicans species, C. glabrata, C. tropicalis, C. krusei, C. parapsilosis and C. lusitaniae have had higher resistance rates against fluconazole than C. albicans (19).

C. krusei is one of the rare isolates of candidurias that is basically resistant to fluconazole (20), however several reports have different results. It is important to note that in the present study C. krusei was dose dependent to amphotericin B, nystatin, and ketoconazole and sensitive to econazole. In addition, isolate was quite resistant to both itraconazole and fluconazole antifungal drugs. Ozcelik et al. (18) have reported that this isolate is quite sensitive to amphotericin B, in contrast, Pfaller et al. (16) showed that C. krusei is resistant to amphotericin B. In addition, Cheng et al. (13) showed that several strains of C. krusei isolated from candidemia were resistant to amphotericin B. In a study conducted by Yang et al. (14) 70% of C. krusei isolates, collected from different hospitals of several regions of Taiwan, were resistant to fluconazole. They concluded that different resistance rates to fluconazole associated with different conditions in hospitals of each region.

The resistance rate of C. glabrata to fluconazole has gradually increased during last decades (19). Manzano-Gayosso et al. (4) study revealed that itraconazole, amphotericin B, and ketoconazole had less antifungal activity against C. glabrata isolates. In a study conducted by Laverdiere et al. (17), 4% of the Candida species isolated from different parts of ICUs patients were resistant to fluconazole and/or itraconazole. They believed that extensive use of antifungals in hospitals may be a risk of emergence of resistant fungal strains.

It is suggested by the current study that controlled surveys must be undertaken to optimize antifungal therapy based on characteristics of Candida strains. The current study indicated that 7.5% of C. glabrata isolates were resistant to fluconazole. It should be considered when C. glabrata is commonly isolated, fluconazole is a frequent choice for treatment and prevention of fungal diseases. The highest fluconazole sensitivity rates were recognized among C. albicans with 9.7%, while none of the isolates of C. tropicalis, C. krusei and Geotrichum spp. were susceptible.

There was no econazole resistance identified in the current study, and higher econazole sensitivity was found in C. albicans in 58.1% of isolates. This result strongly indicates that econazole is very effective against C. albicans.

It is concluded that Candida species isolated from candiduria in hospitalized patients have excellent in vitro activities against econazole. Other suitable antifungal drugs were itraconazole, nystatin and amphotericin. Whereas, resistance against ketoconazole (26.9%) and especially fluconazole (48.4%) was significant.

Acknowledgments
This work was supported with grant by the Ahvaz Jundishapur University of Medical Sciences, Iran (No. U88047). In addition this article has been extracted from an MD thesis (Maryam Beheshi Fard).

Financial Disclosure
The authors state no conflict of interest.

Funding/Support
None declared.

Authors’ Contribution
None declared.

References
9. Dalen DM, Zeonar RK, Jessamine PG. An evaluation of the management of asymptomatic catheter-associated bacteriuria and
Zarei Mahmoudabadi A et al. Sensitivity of Candida spp. to Antifungals

