Molecular identification of *Giardia lamblia* isolates from adult human cases in southwest of Iran

Elham Sadat Roointan¹, Abdollah Rafiei¹,2*, Ali Reza Samarbay-Zadeh³, Ali Akbar Shayesteh⁴, Ahmad Shamsizadeh⁵ and Mahdi Pourmahdi Borujeni⁶

¹Parasitology Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
²Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
³Virology Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
⁴Department of Internal Medicine, Imam Khomeini Hospital, Azadegan Ave. Ahvaz, Iran.
⁵Department of Pediatric, Abozar Hospital, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
⁶Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Iran.

Accepted 29 June, 2012

Giardia lamblia is a flagellated protozoa that infects the intestinal tract of a wide range of mammalian hosts, including both wild and domestic animals as well as humans. Two genotypes A and B are commonly reported among humans. The purpose of this study was to investigate the genotypes of *G. lamblia* among adult infected cases in Ahvaz, southwest of Iran. Fecal samples were collected from 50 patients who had been tested positive to *G. lamblia*. The samples were analyzed by semi-nested polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) using the gdh gene. Our results indicate 38 and 16% assemblages of BIII and AII, respectively. Mixed infections with both assemblages AII and BIII were also detected in 46% of the positive samples. This higher rate of mixed infection in the region may be explained by the common occurrence of repeated and cumulative infection by the parasite in the study area or may reflect environmental contamination of water resources. Therefore, it seems further studies are needed to clarify the route of infection in the study area.

Key words: *Giardia lamblia*, glutamate dehydrogenase (gdh), semi-nested polymerase chain reaction (PCR), PCR-RFLP, Ahvaz, Iran.

INTRODUCTION

Giardia lamblia has been considered as the most commonly identified intestinal parasite that infects human and other mammals (Adam, 2001; Garcia, 2005; Feng and Xiao, 2011). Its prevalence has been estimated to be 5 to 43% in different parts of the world and 5 to 23% in Iran (Garcia, 2005; Thaherkhani et al., 2009). It seems that this parasite is still a public health problem in rural areas of Khozestan with prevalence rate of 9.1% (Mowlavi et al., 2009). Person-to-person, zoonotic, foodborne and waterborne transmissions may occur through the fecal-oral route after contact with the infective stage of the parasite (Caccio et al., 2005; Hunter and Thompson, 2005; Dawson, 2005; Karanis et al., 2007; Smith et al., 2007; Carmena, 2010). Water and food are recognized as the most important vehicles for the transmission of *G. lamblia* (Smith et al., 2007; Carmena, 2010). This parasite causes a wide range of clinical symptoms from asymptomatic infection to diarrheal illness with or without malabsorption and weight loss (Thompson and Monis, 2004). Isoenzyme and DNA analyses revealed that *G. lamblia* is classified into eight major assemblages: A to H (Monis and Thompson, 2003;
Thompson, 2004; Lasek-Nesselquist et al., 2010). Assemblages A and B have been detected in the feces of humans and a broad range of other hosts, including livestock, cats, dogs and beavers (Monis et al., 1999; Thompson, 2004; Xiao and Fayer, 2008; Feng and Xiao, 2011). The assemblage A comprises two subgroups, I and II. Assemblage AI is mainly zoonotic and assemblage All is commonly anthropoontic (Monis et al., 1999; Thompson et al., 2000; Hunter and Thompson, 2005; Xiao and Fayer, 2008). The assemblages B have been grouped into subgroups III and IV. Assemblage BIV appears to be human-specific (Hunter and Thompson, 2005). Genetic assemblages C, D, E, F and G appear to be host restricted to domestic animals, livestock and wild animals (Monis and Thompson, 2003; Xiao and Fayer, 2008; Feng and Xiao, 2011). Recently, assemblage H has been identified in marine vertebrates (Lasek-Nesselquist et al., 2010). Current method for Giardia infection is the microscopic detection of Giardia cysts or trophozoites in stool (Isaac-Renton, 1991; Adam, 2001), but this method cannot distinguish between isolates of G. lamblia. Molecular analytical tools such as polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) provide sensitive and specific diagnostic methods to distinguish between genetically distinct G. lamblia isolates (Caccio et al., 2002; McGlade et al., 2003; Caccio and Ryan, 2008). In this study, we aimed to identify the genotypes of G. lamblia isolates from adult human cases in Ahvaz, southwest of Iran by PCR-RFLP assay using glutamate dehydrogenase (gdh) gene.

MATERIALS AND METHODS

Giardia-positive fecal samples were collected from symptomatic and asymptomatic human populations who were referred to Ahvaz health centers clinics for medical examinations, during September 2011 to July 2012. Positive fecal samples were transferred to the Department of Parasitology, School of Medicine, Ahvaz University of Medical Sciences. The positive samples were confirmed by wet smear stained with Lugol’s iodine and formalin ether using light microscopic examination. All 50 human fecal samples which were positively identified by microscopy were successfully amplified in semi-nested PCR using primers GDHeF and GDHiR (Figure 1). Therefore, the semi-nested gdh PCR showed 100% correlation with the microscopic examination. Among these fecal samples, 23 (46%) cases were identified with mixed genotypes All and BII, defined by the presence of DNA bands at 40, 70, 80, 90, 120 and 290 bp. 19 (38%) samples revealed assemblages BII, defined by the presence of DNA bands at 130 and 300 bp and 8 (16%) samples were assemblage All, determined by the presence of DNA bands at 70, 80, 90 and 120 bp (Figures 2, 3, 4 and Table 1).

RESULTS

All the 50 human fecal samples which were positively identified by microscopy were successfully amplified in semi-nested PCR using primers GDHeF and GDHiR (Figure 1). Therefore, the semi-nested gdh PCR showed 100% correlation with the microscopic examination. Among these fecal samples, 23 (46%) cases were identified with mixed genotypes All and BII, defined by the presence of DNA bands at 40, 70, 80, 90, 120 and 290 bp. 19 (38%) samples revealed assemblages BII, defined by the presence of DNA bands at 130 and 300 bp and 8 (16%) samples were assemblage All, determined by the presence of DNA bands at 70, 80, 90 and 120 bp (Figures 2, 3, 4 and Table 1).

DISCUSSION

G. lamblia is the most common intestinal parasite found throughout the world; it has different major assemblages (Garcia, 2005; Ivanov, 2011), which can only be distinguished by molecular techniques such as PCR-RFLP (Monis et al., 1999; Thompson, 2004; Caccio and Ryan, 2008). This is a sensitive, simple, rapid and powerful method that is capable of detecting mixed...
genotypes (Homan et al., 1998; Amar et al., 2002; Read et al., 2004). For the first time, the present study provides information on the distribution of the genotypes of G. lamblia from humans in Ahvaz, southwest of Iran. All 50 fecal samples that were identified as positive with microscopic examination were also successfully amplified in semi-nested PCR. Some previous studies had false negative results using PCR (Amar et al., 2002; Bertrand et al., 2005; Hatam-Nahavandi et al., 2011). These failures may be as a result of: initial misidentification, low DNA levels, the existence of a robust wall that inhibits the release of DNA from the cysts, the presence of PCR inhibitors in some of the fecal samples or degradation of parasite material during storage. In the current study, assemblages BIII and AII were detected in 38 and 16% of the samples, respectively. A higher prevalence rate of assemblage B in our study is in agreement with the results of Hatam-Nahavandi et al. (2011). Their study indicated that 66.7% of human clinical samples contained assemblage B (44.4% BIII and 22.2% BIV) in the northwest of Iran, while other Iranian studies showed a higher rate of assemblage AII (Babaei et al., 2008; Etemadi et al., 2011). In agreement with our results in other countries, Tungtrongchitr et al. (2010) in Thailand proved that assemblage B (51%) was more common than assemblage A (8%). Similarly, Breathnach et al. (2010) observed 73% of assemblage B and 24% assemblage A in 199 human fecal samples in the southwest of London. Singh et al. (2009) in Nepal, indicated that infection with assemblage B (74%) was more prevalent than assemblage A (20%) in patients older than 12 years of age. Mohammed et al. (2009) found that assemblage B was significantly more common among 42 fecal samples in Malaysia. Sahagun et al. (2008) observed 53.8% of assemblage B and 41.5% assemblage A in 65 patients.
from 5 to 72 years of age in Spain. In Egypt, Foronda et al. (2008) found that assemblage B was the most prevalent (80%) genotype among 97 fecal samples. In the study conducted by Guy et al. (2004), the majority of clinical fecal samples were assemblage BIII. In India, the proportion of assemblages B and A in giardiasis patients was 61 and 39%, respectively (Traub et al., 2004). Amar et al. (2002) found that 64% of human clinical samples were assemblage B in the UK. In such studies, some of the researchers mentioned that, aside from human to human transmission of giardiasis in their area, zoonotic transmission also plays a role.

In contrast, in Palestine, Hussein et al. (2009) observed that assemblage All was more prevalent in eight fecal samples. In Egypt, Helmy et al. (2009) reported 75% assemblage A and 19.5% assemblage B among 41 patients. Souza et al. (2007) indicated that infection with assemblage All (78.4%) was more prevalent in Brazil. Homan and Mank (2001) observed that assemblage A was more prevalent in patients between 8 to 60 years of age in the Netherlands. These researchers concluded that humans are probably the most important reservoirs in the studied regions. Differences in the prevalence of assemblages A and B may be due to the geographical locations of the populations studied, the role of animals in the transmission of the disease and the levels of hygiene conditions. In the present study, mixed infection of G. lamblia assemblages group All and BIII were detected in 46% of the samples, which is in agreement with some previous studies, but it seems that the rate of mixed infection with genotypes All and BIII, in our report is higher than the others (Amar et al., 2002; Guy et al., 2004; Yason and Rivera, 2007; Sahagun et al., 2008; Singh et al., 2009; Tungtrongchitr et al. 2010). We do not have a clear explanation for this higher rate of mixed infection in the region, but the multiple infections of G. lamblia may be explained by the common occurrence of repeated and cumulative infection by the parasite in the study area. Finally, it seems that the significance of the predominant mixed infection in our study is unclear and further study with human and animal fecal samples, as well as environmental water resources, are needed in order to better understand the route of Giardia
transmission.

ACKNOWLEDGEMENTS

This paper is issued from thesis of Miss Elham Roointan and financial support was provided by Research Center of Tropical and Infectious Diseases of Ahvaz Jundishapur University of Medical Sciences. We thank the health center staff and all patients who participated in the survey undertaken.

REFERENCES

